Paper Reading AI Learner

Survey of explainable machine learning with visual and granular methods beyond quasi-explanations

2020-09-21 23:39:06
Boris Kovalerchuk (1), Muhammad Aurangzeb Ahmad (2 and 3), Ankur Teredesai (2 and 3) ((1) Department of Computer Science, Central Washington University, USA (2) Department of Computer Science and Systems, University of Washington Tacoma, USA (3) Kensci Inc., USA)

Abstract

This paper surveys visual methods of explainability of Machine Learning (ML) with focus on moving from quasi-explanations that dominate in ML to domain-specific explanation supported by granular visuals. ML interpretation is fundamentally a human activity and visual methods are more readily interpretable. While efficient visual representations of high-dimensional data exist, the loss of interpretable information, occlusion, and clutter continue to be a challenge, which lead to quasi-explanations. We start with the motivation and the different definitions of explainability. The paper focuses on a clear distinction between quasi-explanations and domain specific explanations, and between explainable and an actually explained ML model that are critically important for the explainability domain. We discuss foundations of interpretability, overview visual interpretability and present several types of methods to visualize the ML models. Next, we present methods of visual discovery of ML models, with the focus on interpretable models, based on the recently introduced concept of General Line Coordinates (GLC). These methods take the critical step of creating visual explanations that are not merely quasi-explanations but are also domain specific visual explanations while these methods themselves are domain-agnostic. The paper includes results on theoretical limits to preserve n-D distances in lower dimensions, based on the Johnson-Lindenstrauss lemma, point-to-point and point-to-graph GLC approaches, and real-world case studies. The paper also covers traditional visual methods for understanding ML models, which include deep learning and time series models. We show that many of these methods are quasi-explanations and need further enhancement to become domain specific explanations. We conclude with outlining open problems and current research frontiers.

Abstract (translated)

URL

https://arxiv.org/abs/2009.10221

PDF

https://arxiv.org/pdf/2009.10221.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot