Paper Reading AI Learner

Local and non-local dependency learning and emergence of rule-like representations in speech data by Deep Convolutional Generative Adversarial Networks

2020-09-27 00:02:34
Gašper Beguš

Abstract

This paper argues that training GANs on local and non-local dependencies in speech data offers insights into how deep neural networks discretize continuous data and how symbolic-like rule-based morphophonological processes emerge in a deep convolutional architecture. Acquisition of speech has recently been modeled as a dependency between latent space and data generated by GANs in Beguš (arXiv:2006.03965), who models learning of a simple local allophonic distribution. We extend this approach to test learning of local and non-local phonological processes that include approximations of morphological processes. We further parallel outputs of the model to results of a behavioral experiment where human subjects are trained on the data used for training the GAN network. Four main conclusions emerge: (i) the networks provide useful information for computational models of language acquisition even if trained on a comparatively small dataset of an artificial grammar learning experiment; (ii) local processes are easier to learn than non-local processes, which matches both behavioral data in human subjects and typology in the world's languages. This paper also proposes (iii) how we can actively observe the network's progress in learning and explore the effect of training steps on learning representations by keeping latent space constant across different training steps. Finally, this paper shows that (iv) the network learns to encode the presence of a prefix with a single latent variable; by interpolating this variable, we can actively observe the operation of a non-local phonological process. The proposed technique for retrieving learning representations has general implications for our understanding of how GANs discretize continuous speech data and suggests that rule-like generalizations in the training data are represented as an interaction between variables in the network's latent space.

Abstract (translated)

URL

https://arxiv.org/abs/2009.12711

PDF

https://arxiv.org/pdf/2009.12711.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot