Paper Reading AI Learner

Explainable Deep Reinforcement Learning for UAV Autonomous Navigation

2020-09-30 10:40:44
Lei He, Aouf Nabil, Bifeng Song

Abstract

Modern deep reinforcement learning plays an important role to solve a wide range of complex decision-making tasks. However, due to the use of deep neural networks, the trained models are lacking transparency which causes distrust from their user and hard to be used in the critical field such as self-driving car and unmanned aerial vehicles. In this paper, an explainable deep reinforcement learning method is proposed to deal with the multirotor obstacle avoidance and navigation problem. Both visual and textual explanation is provided to make the trained agent more transparency and comprehensible for humans. Our model can provide real-time decision explanation for non-expert users. Also, some global explanation results are provided for experts to diagnose the learned policy. Our method is validated in the simulation environment. The simulation result shows our proposed method can get useful explanations to increase the user's trust to the network and also improve the network performance.

Abstract (translated)

URL

https://arxiv.org/abs/2009.14551

PDF

https://arxiv.org/pdf/2009.14551.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot