Paper Reading AI Learner

Putting Theory to Work: From Learning Bounds to Meta-Learning Algorithms

2020-10-05 13:24:43
Quentin Bouniot, Ievgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard

Abstract

Most of existing deep learning models rely on excessive amounts of labeled training data in order to achieve state-of-the-art results, even though these data can be hard or costly to get in practice. One attractive alternative is to learn with little supervision, commonly referred to as few-shot learning (FSL), and, in particular, meta-learning that learns to learn with few data from related tasks. Despite the practical success of meta-learning, many of its algorithmic solutions proposed in the literature are based on sound intuitions, but lack a solid theoretical analysis of the expected performance on the test task. In this paper, we review the recent advances in meta-learning theory and show how they can be used in practice both to better understand the behavior of popular meta-learning algorithms and to improve their generalization capacity. This latter is achieved by integrating the theoretical assumptions ensuring efficient meta-learning in the form of regularization terms into several popular meta-learning algorithms for which we provide a large study of their behavior on classic few-shot classification benchmarks. To the best of our knowledge, this is the first contribution that puts the most recent learning bounds of meta-learning theory into practice for the popular task of few-shot classification.

Abstract (translated)

URL

https://arxiv.org/abs/2010.01992

PDF

https://arxiv.org/pdf/2010.01992.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot