Paper Reading AI Learner

Predicting Hourly Demand in Station-free Bike-sharing Systems with Video-level Data

2020-09-23 06:51:23
Xiao Yan, Gang Kou, Feng Xiao, Dapeng Zhang, Xianghua Gan

Abstract

Temporal and spatial features are both important for predicting the demands in the bike-sharing systems. Many relevant experiments in the literature support this. Meanwhile, it is observed that the data structure of spatial features with vector form is weaker in space than the videos, which have natural spatial structure. Therefore, to obtain more spatial features, this study introduces city map to generate GPS demand videos while employing a novel algorithm : eidetic 3D convolutional long short-term memory network named E3D-LSTM to process the video-level data in bike-sharing system. The spatio-temporal correlations and feature importance are experimented and visualized to validate the significance of spatial and temporal features. Despite the deep learning model is powerful in non-linear fitting ability, statistic model has better interpretation. This study adopts ensemble learning, which is a popular policy, to improve the performance and decrease variance. In this paper, we propose a novel model stacked by deep learning and statistical models, named the fusion multi-channel eidetic 3D convolutional long short-term memory network(FM-E3DCL-Net), to better process temporal and spatial features on the dataset about 100,000 transactions within one month in Shanghai of Mobike company. Furthermore, other factors like weather, holiday and time intervals are proved useful in addition to historical demand, since they decrease the root mean squared error (RMSE) by 29.4%. On this basis, the ensemble learning further decreases RMSE by 6.6%.

Abstract (translated)

URL

https://arxiv.org/abs/2010.03027

PDF

https://arxiv.org/pdf/2010.03027.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot