Paper Reading AI Learner

Empirical Study of Transformers for Source Code

2020-10-15 19:09:15
Nadezhda Chirkova, Sergey Troshin

Abstract

Initially developed for natural language processing (NLP), Transformers are now widely used for source code processing, due to the format similarity between source code and text. In contrast to natural language, source code is strictly structured, i. e. follows the syntax of the programming language. Several recent works develop Transformer modifications for capturing syntactic information in source code. The drawback of these works is that they do not compare to each other and all consider different tasks. In this work, we conduct a thorough empirical study of the capabilities of Transformers to utilize syntactic information in different tasks. We consider three tasks (code completion, function naming and bug fixing) and re-implement different syntax-capturing modifications in a unified framework. We show that Transformers are able to make meaningful predictions based purely on syntactic information and underline the best practices of taking the syntactic information into account for improving the performance of the model.

Abstract (translated)

URL

https://arxiv.org/abs/2010.07987

PDF

https://arxiv.org/pdf/2010.07987.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot