Paper Reading AI Learner

Topic-Aware Abstractive Text Summarization

2020-10-20 14:45:25
Chujie Zheng, Kunpeng Zhang, Harry Jiannan Wang, Ling Fan

Abstract

Automatic text summarization aims at condensing a document to a shorter version while preserving the key information. Different from extractive summarization which simply selects text fragments from the document, abstractive summarization generates the summary in a word-by-word manner. Most current state-of-the-art (SOTA) abstractive summarization methods are based on the Transformer-based encoder-decoder architecture and focus on novel self-supervised objectives in pre-training. While these models well capture the contextual information among words in documents, little attention has been paid to incorporating global semantics to better fine-tune for the downstream abstractive summarization task. In this study, we propose a topic-aware abstractive summarization (TAAS) framework by leveraging the underlying semantic structure of documents represented by their latent topics. Specifically, TAAS seamlessly incorporates a neural topic modeling into an encoder-decoder based sequence generation procedure via attention for summarization. This design is able to learn and preserve global semantics of documents and thus makes summarization effective, which has been proved by our experiments on real-world datasets. As compared to several cutting-edge baseline methods, we show that TAAS outperforms BART, a well-recognized SOTA model, by 2%, 8%, and 12% regarding the F measure of ROUGE-1, ROUGE-2, and ROUGE-L, respectively. TAAS also achieves comparable performance to PEGASUS and ProphetNet, which is difficult to accomplish given that training PEGASUS and ProphetNet requires enormous computing capacity beyond what we used in this study.

Abstract (translated)

URL

https://arxiv.org/abs/2010.10323

PDF

https://arxiv.org/pdf/2010.10323.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot