Paper Reading AI Learner

QISTA-Net: DNN Architecture to Solve $ell_q$-norm Minimization Problem and Image Compressed Sensing

2020-10-22 01:00:45
Gang-Xuan Lin, Shih-Wei Hu, Chun-Shien Lu

Abstract

In this paper, we reformulate the non-convex $\ell_q$-norm minimization problem with $q\in(0,1)$ into a 2-step problem, which consists of one convex and one non-convex subproblems, and propose a novel iterative algorithm called QISTA ($\ell_q$-ISTA) to solve the $\left(\ell_q\right)$-problem. By taking advantage of deep learning in accelerating optimization algorithms, together with the speedup strategy that using the momentum from all previous layers in the network, we propose a learning-based method, called QISTA-Net-s, to solve the sparse signal reconstruction problem. Extensive experimental comparisons demonstrate that the QISTA-Net-s yield better reconstruction qualities than state-of-the-art $\ell_1$-norm optimization (plus learning) algorithms even if the original sparse signal is noisy. On the other hand, based on the network architecture associated with QISTA, with considering the use of convolution layers, we proposed the QISTA-Net-n for solving the image CS problem, and the performance of the reconstruction still outperforms most of the state-of-the-art natural images reconstruction methods. QISTA-Net-n is designed in unfolding QISTA and adding the convolutional operator as the dictionary. This makes QISTA-Net-s interpretable. We provide complete experimental results that QISTA-Net-s and QISTA-Net-n contribute the better reconstruction performance than the competing.

Abstract (translated)

URL

https://arxiv.org/abs/2010.11363

PDF

https://arxiv.org/pdf/2010.11363.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot