Paper Reading AI Learner

Exploiting Multiple Intelligent Reflecting Surfaces in Multi-Cell Uplink MIMO Communications

2020-11-02 17:33:23
Junghoon Kim, Seyyedali Hosseinalipour, Taejoon Kim, David J. Love, Christopher G. Brinton

Abstract

Applications of intelligent reflecting surfaces (IRSs) in wireless networks have attracted significant attention recently. Most of the relevant literature is focused on the single cell setting where a single IRS is deployed, while static and perfect channel state information (CSI) is assumed. In this work, we develop a novel methodology for multi-IRS-assisted multi-cell networks in the uplink. We formulate the sum-rate maximization problem aiming to jointly optimize the IRS reflect beamformers, base station (BS) combiners, and user equipment (UE) transmit powers. In this optimization, we consider the scenario in which (i) channels are dynamic and (ii) only partial CSI is available at each BS; specifically, scalar effective channels of local UEs and some of the interfering UEs. In casting this as a sequential decision making problem, we propose a multi-agent deep reinforcement learning algorithm to solve it, where each BS acts as an independent agent in charge of tuning the local UEs transmit powers, the local IRS reflect beamformer, and its combiners. We introduce an efficient message passing scheme that requires limited information exchange among the neighboring BSs to cope with the non-stationarity caused by the coupling of actions taken by multiple BSs. Our numerical simulations show that our method obtains substantial improvement in average data rate compared to several baseline approaches, e.g., fixed UEs transmit power and maximum ratio combining.

Abstract (translated)

URL

https://arxiv.org/abs/2011.01141

PDF

https://arxiv.org/pdf/2011.01141.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot