Paper Reading AI Learner

Catch the 'Tails' of BERT

2020-11-09 12:49:39
Ziyang Luo

Abstract

Recently, contextualized word embeddings outperform static word embeddings on many NLP tasks. However, we still don't know much about the mechanism inside these internal representations produced by BERT. Do they have any common patterns? What are the relations between word sense and context? We find that nearly all the contextualized word vectors of BERT and RoBERTa have some common patterns. For BERT, the $557^{th}$ element is always the smallest. For RoBERTa, the $588^{th}$ element is always the largest and the $77^{th}$ element is the smallest. We call them as "tails" of models. We find that these "tails" are the major cause of anisotrpy of the vector space. After "cutting the tails", the same word's different vectors are more similar to each other. The internal representations also perform better on word-in-context (WiC) task. These suggest that "cutting the tails" can decrease the influence of context and better represent word sense.

Abstract (translated)

URL

https://arxiv.org/abs/2011.04393

PDF

https://arxiv.org/pdf/2011.04393.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot