Paper Reading AI Learner

Curriculum CycleGAN for Textual Sentiment Domain Adaptation with Multiple Sources

2020-11-17 14:50:55
Sicheng Zhao, Yang Xiao, Jiang Guo, Xiangyu Yue, Jufeng Yang, Ravi Krishna, Pengfei Xu, Kurt Keutzer

Abstract

Sentiment analysis of user-generated reviews or comments on products and services on social media can help enterprises to analyze the feedback from customers and take corresponding actions for improvement. To mitigate large-scale annotations, domain adaptation (DA) provides an alternate solution by learning a transferable model from another labeled source domain. Since the labeled data may be from multiple sources, multi-source domain adaptation (MDA) would be more practical to exploit the complementary information from different domains. Existing MDA methods might fail to extract some discriminative features in the target domain that are related to sentiment, neglect the correlations of different sources as well as the distribution difference among different sub-domains even in the same source, and cannot reflect the varying optimal weighting during different training stages. In this paper, we propose an instance-level multi-source domain adaptation framework, named curriculum cycle-consistent generative adversarial network (C-CycleGAN). Specifically, C-CycleGAN consists of three components: (1) pre-trained text encoder which encodes textual input from different domains into a continuous representation space, (2) intermediate domain generator with curriculum instance-level adaptation which bridges the gap across source and target domains, and (3) task classifier trained on the intermediate domain for final sentiment classification. C-CycleGAN transfers source samples at an instance-level to an intermediate domain that is closer to target domain with sentiment semantics preserved and without losing discriminative features. Further, our dynamic instance-level weighting mechanisms can assign the optimal weights to different source samples in each training stage. We conduct extensive experiments on three benchmark datasets and achieve substantial gains over state-of-the-art approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2011.08678

PDF

https://arxiv.org/pdf/2011.08678.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot