Paper Reading AI Learner

Self-Gradient Networks

2020-11-18 16:04:05
Hossein Aboutalebi, Mohammad Javad Shafiee Alexander Wong

Abstract

The incredible effectiveness of adversarial attacks on fooling deep neural networks poses a tremendous hurdle in the widespread adoption of deep learning in safety and securitycritical domains. While adversarial defense mechanisms have been proposed since the discovery of the adversarial vulnerability issue of deep neural networks, there is a long path to fully understand and address this issue. In this study, we hypothesize that part of the reason for the incredible effectiveness of adversarial attacks is their ability to implicitly tap into and exploit the gradient flow of a deep neural network. This innate ability to exploit gradient flow makes defending against such attacks quite challenging. Motivated by this hypothesis we argue that if a deep neural network architecture can explicitly tap into its own gradient flow during the training, it can boost its defense capability significantly. Inspired by this fact, we introduce the concept of self-gradient networks, a novel deep neural network architecture designed to be more robust against adversarial perturbations. Gradient flow information is leveraged within self-gradient networks to achieve greater perturbation stability beyond what can be achieved in the standard training process. We conduct a theoretical analysis to gain better insights into the behaviour of the proposed self-gradient networks to illustrate the efficacy of leverage this additional gradient flow information. The proposed self-gradient network architecture enables much more efficient and effective adversarial training, leading to faster convergence towards an adversarially robust solution by at least 10?. Experimental results demonstrate the effectiveness of self-gradient networks when compared with state-of-the-art adversarial learning strategies, with 10% improvement on the CIFAR10 dataset under PGD and CW adversarial perturbations.

Abstract (translated)

URL

https://arxiv.org/abs/2011.09364

PDF

https://arxiv.org/pdf/2011.09364.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot