Paper Reading AI Learner

Enriching ImageNet with Human Similarity Judgments and Psychological Embeddings

2020-11-22 13:41:54
Brett D. Roads, Bradley C. Love

Abstract

Advances in object recognition flourished in part because of the availability of high-quality datasets and associated benchmarks. However, these benchmarks---such as ILSVRC---are relatively task-specific, focusing predominately on predicting class labels. We introduce a publicly-available dataset that embodies the task-general capabilities of human perception and reasoning. The Human Similarity Judgments extension to ImageNet (ImageNet-HSJ) is composed of human similarity judgments that supplement the ILSVRC validation set. The new dataset supports a range of task and performance metrics, including the evaluation of unsupervised learning algorithms. We demonstrate two methods of assessment: using the similarity judgments directly and using a psychological embedding trained on the similarity judgments. This embedding space contains an order of magnitude more points (i.e., images) than previous efforts based on human judgments. Scaling to the full 50,000 image set was made possible through a selective sampling process that used variational Bayesian inference and model ensembles to sample aspects of the embedding space that were most uncertain. This methodological innovation not only enables scaling, but should also improve the quality of solutions by focusing sampling where it is needed. To demonstrate the utility of ImageNet-HSJ, we used the similarity ratings and the embedding space to evaluate how well several popular models conform to human similarity judgments. One finding is that more complex models that perform better on task-specific benchmarks do not better conform to human semantic judgments. In addition to the human similarity judgments, pre-trained psychological embeddings and code for inferring variational embeddings are made publicly available. Collectively, ImageNet-HSJ assets support the appraisal of internal representations and the development of more human-like models.

Abstract (translated)

URL

https://arxiv.org/abs/2011.11015

PDF

https://arxiv.org/pdf/2011.11015.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot