Paper Reading AI Learner

A Use of Even Activation Functions in Neural Networks

2020-11-23 20:33:13
Fuchang Gao, Boyu Zhang

Abstract

Despite broad interest in applying deep learning techniques to scientific discovery, learning interpretable formulas that accurately describe scientific data is very challenging because of the vast landscape of possible functions and the "black box" nature of deep neural networks. The key to success is to effectively integrate existing knowledge or hypotheses about the underlying structure of the data into the architecture of deep learning models to guide machine learning. Currently, such integration is commonly done through customization of the loss functions. Here we propose an alternative approach to integrate existing knowledge or hypotheses of data structure by constructing custom activation functions that reflect this structure. Specifically, we study a common case when the multivariate target function $f$ to be learned from the data is partially exchangeable, \emph{i.e.} $f(u,v,w)=f(v,u,w)$ for $u,v\in \mathbb{R}^d$. For instance, these conditions are satisfied for the classification of images that is invariant under left-right flipping. Through theoretical proof and experimental verification, we show that using an even activation function in one of the fully connected layers improves neural network performance. In our experimental 9-dimensional regression problems, replacing one of the non-symmetric activation functions with the designated "Seagull" activation function $\log(1+x^2)$ results in substantial improvement in network performance. Surprisingly, even activation functions are seldom used in neural networks. Our results suggest that customized activation functions have great potential in neural networks.

Abstract (translated)

URL

https://arxiv.org/abs/2011.11713

PDF

https://arxiv.org/pdf/2011.11713.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot