Paper Reading AI Learner

Why Convolutional Networks Learn Oriented Bandpass Filters: Theory and Empirical Support

2020-11-30 10:10:44
Isma Hadji, Richard P. Wildes

Abstract

It has been repeatedly observed that convolutional architectures when applied to image understanding tasks learn oriented bandpass filters. A standard explanation of this result is that these filters reflect the structure of the images that they have been exposed to during training: Natural images typically are locally composed of oriented contours at various scales and oriented bandpass filters are matched to such structure. We offer an alternative explanation based not on the structure of images, but rather on the structure of convolutional architectures. In particular, complex exponentials are the eigenfunctions of convolution. These eigenfunctions are defined globally; however, convolutional architectures operate locally. To enforce locality, one can apply a windowing function to the eigenfunctions, which leads to oriented bandpass filters as the natural operators to be learned with convolutional architectures. From a representational point of view, these filters allow for a local systematic way to characterize and operate on an image or other signal. We offer empirical support for the hypothesis that convolutional networks learn such filters at all of their convolutional layers. While previous research has shown evidence of filters having oriented bandpass characteristics at early layers, ours appears to be the first study to document the predominance of such filter characteristics at all layers. Previous studies have missed this observation because they have concentrated on the cumulative compositional effects of filtering across layers, while we examine the filter characteristics that are present at each layer.

Abstract (translated)

URL

https://arxiv.org/abs/2011.14665

PDF

https://arxiv.org/pdf/2011.14665.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot