Paper Reading AI Learner

Decomposition, Compression, and Synthesis -based Video Coding: A Neural Exploration via Resolution-Adaptive Learning

2020-12-01 17:23:53
Ming Lu, Tong Chen, Dandan Ding, Fengqing Zhu, Zhan Ma

Abstract

Inspired by the facts that retinal cells actually segregate the visual scene into different attributes (e.g., spatial details, temporal motion) for respective neuronal processing, we propose to first decompose the input video into respective spatial texture frames (STF) at its native spatial resolution that preserve the rich spatial details, and the other temporal motion frames (TMF) at a lower spatial resolution that retain the motion smoothness; then compress them together using any popular video coder; and finally synthesize decoded STFs and TMFs for high-fidelity video reconstruction at the same resolution as its native input. This work simply applies the bicubic resampling in decomposition and HEVC compliant codec in compression, and puts the focus on the synthesis part. For resolution-adaptive synthesis, a motion compensation network (MCN) is devised on TMFs to efficiently align and aggregate temporal motion features that will be jointly processed with corresponding STFs using a non-local texture transfer network (NL-TTN) to better augment spatial details, by which the compression and resolution resampling noises can be effectively alleviated with better rate-distortion efficiency. Such "Decomposition, Compression, Synthesis (DCS)" based scheme is codec agnostic, currently exemplifying averaged $\approx$1 dB PSNR gain or $\approx$25% BD-rate saving, against the HEVC anchor using reference software. In addition, experimental comparisons to the state-of-the-art methods and ablation studies are conducted to further report the efficiency and generalization of DCS algorithm, promising an encouraging direction for future video coding.

Abstract (translated)

URL

https://arxiv.org/abs/2012.00650

PDF

https://arxiv.org/pdf/2012.00650.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot