Paper Reading AI Learner

One-Shot Object Localization in Medical Images based on Relative Position Regression

2020-12-13 11:54:19
Wenhui Lei, Wei Xu, Ran Gu, Hao Fu, Shaoting Zhang, Guotai Wang

Abstract

Deep learning networks have shown promising performance for accurate object localization in medial images, but require large amount of annotated data for supervised training, which is expensive and expertise burdensome. To address this problem, we present a one-shot framework for organ and landmark localization in volumetric medical images, which does not need any annotation during the training stage and could be employed to locate any landmarks or organs in test images given a support (reference) image during the inference stage. Our main idea comes from that tissues and organs from different human bodies have a similar relative position and context. Therefore, we could predict the relative positions of their non-local patches, thus locate the target organ. Our framework is composed of three parts: (1) A projection network trained to predict the 3D offset between any two patches from the same volume, where human annotations are not required. In the inference stage, it takes one given landmark in a reference image as a support patch and predicts the offset from a random patch to the corresponding landmark in the test (query) volume. (2) A coarse-to-fine framework contains two projection networks, providing more accurate localization of the target. (3) Based on the coarse-to-fine model, we transfer the organ boundingbox (B-box) detection to locating six extreme points along x, y and z directions in the query volume. Experiments on multi-organ localization from head-and-neck (HaN) CT volumes showed that our method acquired competitive performance in real time, which is more accurate and 10^5 times faster than template matching methods with the same setting. Code is available: this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2012.07043

PDF

https://arxiv.org/pdf/2012.07043.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot