Paper Reading AI Learner

Transformer for Image Quality Assessment

2020-12-30 18:43:11
Junyong You, Jari Korhonen

Abstract

Transformer has become the new standard method in natural language processing (NLP), and it also attracts research interests in computer vision area. In this paper we investigate the application of Transformer in Image Quality (TRIQ) assessment. Following the original Transformer encoder employed in Vision Transformer (ViT), we propose an architecture of using a shallow Transformer encoder on the top of a feature map extracted by convolution neural networks (CNN). Adaptive positional embedding is employed in the Transformer encoder to handle images with arbitrary resolutions. Different settings of Transformer architectures have been investigated on publicly available image quality databases. We have found that the proposed TRIQ architecture achieves outstanding performance. The implementation of TRIQ is published on Github (this https URL).

Abstract (translated)

URL

https://arxiv.org/abs/2101.01097

PDF

https://arxiv.org/pdf/2101.01097.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot