Paper Reading AI Learner

KART: Privacy Leakage Framework of Language Models Pre-trained with Clinical Records

2020-12-31 19:06:18
Yuta Nakamura (1 and 2), Shouhei Hanaoka (3), Yukihiro Nomura (4), Naoto Hayashi (4), Osamu Abe (1 and 3), Shuntaro Yada (2), Shoko Wakamiya (2), Eiji Aramaki (2) ((1) The University of Tokyo, (2) Nara Institute of Science and Technology, (3) The Department of Radiology, The University of Tokyo Hospital, (4) The Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital)

Abstract

Nowadays, mainstream natural language pro-cessing (NLP) is empowered by pre-trained language models. In the biomedical domain, only models pre-trained with anonymized data have been published. This policy is acceptable, but there are two questions: Can the privacy policy of language models be different from that of data? What happens if private language models are accidentally made public? We empirically evaluated the privacy risk of language models, using several BERT models pre-trained with MIMIC-III corpus in different data anonymity and corpus sizes. We simulated model inversion attacks to obtain the clinical information of target individuals, whose full names are already known to attackers. The BERT models were probably low-risk because the Top-100 accuracy of each attack was far below expected by chance. Moreover, most privacy leakage situations have several common primary factors; therefore, we formalized various privacy leakage scenarios under a universal novel framework named Knowledge, Anonymization, Resource, and Target (KART) framework. The KART framework helps parameterize complex privacy leakage scenarios and simplifies the comprehensive evaluation. Since the concept of the KART framework is domain agnostic, it can contribute to the establishment of privacy guidelines of language models beyond the biomedical domain.

Abstract (translated)

URL

https://arxiv.org/abs/2101.00036

PDF

https://arxiv.org/pdf/2101.00036.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot