Paper Reading AI Learner

Controlling Synthetic Characters in Simulations: A Case for Cognitive Architectures and Sigma

2021-01-06 19:07:36
Volkan Ustun, Paul S. Rosenbloom, Seyed Sajjadi, Jeremy Nuttal

Abstract

Simulations, along with other similar applications like virtual worlds and video games, require computational models of intelligence that generate realistic and credible behavior for the participating synthetic characters. Cognitive architectures, which are models of the fixed structure underlying intelligent behavior in both natural and artificial systems, provide a conceptually valid common basis, as evidenced by the current efforts towards a standard model of the mind, to generate human-like intelligent behavior for these synthetic characters. Sigma is a cognitive architecture and system that strives to combine what has been learned from four decades of independent work on symbolic cognitive architectures, probabilistic graphical models, and more recently neural models, under its graphical architecture hypothesis. Sigma leverages an extended form of factor graphs towards a uniform grand unification of not only traditional cognitive capabilities but also key non-cognitive aspects, creating unique opportunities for the construction of new kinds of cognitive models that possess a Theory-of-Mind and that are perceptual, autonomous, interactive, affective, and adaptive. In this paper, we will introduce Sigma along with its diverse capabilities and then use three distinct proof-of-concept Sigma models to highlight combinations of these capabilities: (1) Distributional reinforcement learning models in; (2) A pair of adaptive and interactive agent models that demonstrate rule-based, probabilistic, and social reasoning; and (3) A knowledge-free exploration model in which an agent leverages only architectural appraisal variables, namely attention and curiosity, to locate an item while building up a map in a Unity environment.

Abstract (translated)

URL

https://arxiv.org/abs/2101.02231

PDF

https://arxiv.org/pdf/2101.02231.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot