Paper Reading AI Learner

Associated Spatio-Temporal Capsule Network for Gait Recognition

2021-01-07 09:55:17
Aite Zhao, Junyu Dong, Jianbo Li, Lin Qi, Huiyu Zhou


tract: It is a challenging task to identify a person based on her/his gait patterns. State-of-the-art approaches rely on the analysis of temporal or spatial characteristics of gait, and gait recognition is usually performed on single modality data (such as images, skeleton joint coordinates, or force signals). Evidence has shown that using multi-modality data is more conducive to gait research. Therefore, we here establish an automated learning system, with an associated spatio-temporal capsule network (ASTCapsNet) trained on multi-sensor datasets, to analyze multimodal information for gait recognition. Specifically, we first design a low-level feature extractor and a high-level feature extractor for spatio-temporal feature extraction of gait with a novel recurrent memory unit and a relationship layer. Subsequently, a Bayesian model is employed for the decision-making of class labels. Extensive experiments on several public datasets (normal and abnormal gait) validate the effectiveness of the proposed ASTCapsNet, compared against several state-of-the-art methods.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot