Paper Reading AI Learner

Investigating the Vision Transformer Model for Image Retrieval Tasks

2021-01-11 08:59:54
Socratis Gkelios, Yiannis Boutalis, Savvas A. Chatzichristofis

Abstract

tract: This paper introduces a plug-and-play descriptor that can be effectively adopted for image retrieval tasks without prior initialization or preparation. The description method utilizes the recently proposed Vision Transformer network while it does not require any training data to adjust parameters. In image retrieval tasks, the use of Handcrafted global and local descriptors has been very successfully replaced, over the last years, by the Convolutional Neural Networks (CNN)-based methods. However, the experimental evaluation conducted in this paper on several benchmarking datasets against 36 state-of-the-art descriptors from the literature demonstrates that a neural network that contains no convolutional layer, such as Vision Transformer, can shape a global descriptor and achieve competitive results. As fine-tuning is not required, the presented methodology's low complexity encourages adoption of the architecture as an image retrieval baseline model, replacing the traditional and well adopted CNN-based approaches and inaugurating a new era in image retrieval approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2101.03771

PDF

https://arxiv.org/pdf/2101.03771


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot