Paper Reading AI Learner

Integrating a joint Bayesian generative model in a discriminative learning framework for speaker verification

2021-01-09 10:10:04
Xugang Lu, Peng Shen, Yu Tsao, Hisashi Kawai


tract: The task for speaker verification (SV) is to decide an utterance is spoken by a target or imposter speaker. In most SV studies, a log-likelihood ratio (L_LLR) score is estimated based on a generative probability model on speaker features, and compared with a threshold for decision making. However, the generative model usually focuses on feature distributions and does not have the discriminative feature selection ability, which is easy to be distracted by nuisance features. The SV, as a hypothesis test, could be formulated as a binary classification task where a neural network (NN) based discriminative learning could be applied. Through discriminative learning, the nuisance features could be removed with the help of label supervision. However, the discriminative learning pays more attention to classification boundaries which is prone to overfitting to training data and yielding poor generalization on testing data. In this paper, we propose a hybrid learning framework, i.e., integrating a joint Bayesian (JB) generative model into a neural discriminative learning framework for SV. A Siamese NN is built with dense layers to approximate the mapping functions used in the SV pipeline with the JB model, and the L-LLR score estimated based on the JB model is connected to the distance metric in a pair-wised discriminative learning. By initializing the Siamese NN with the parameters learned from the JB model, we further train the model parameters with the pair-wised samples as a binary discrimination task. Moreover, direct evaluation metric in SV, i.e., minimum empirical Bayes risk, is designed and integrated as an objective function in the discriminative learning. We carried out SV experiments on speakers in the wild (SITW) and Voxceleb corpora. Experimental results showed that our proposed model improved the performance with a large margin compared with state-of-the-art models for SV.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot