Paper Reading AI Learner

UFA-FUSE: A novel deep supervised and hybrid model for multi-focus image fusion

2021-01-12 14:33:13
Yongsheng Zang, Dongming Zhou, Changcheng Wang, Rencan Nie, Yanbu Guo

Abstract

tract: Traditional and deep learning-based fusion methods generated the intermediate decision map to obtain the fusion image through a series of post-processing procedures. However, the fusion results generated by these methods are easy to lose some source image details or results in artifacts. Inspired by the image reconstruction techniques based on deep learning, we propose a multi-focus image fusion network framework without any post-processing to solve these problems in the end-to-end and supervised learning way. To sufficiently train the fusion model, we have generated a large-scale multi-focus image dataset with ground-truth fusion images. What's more, to obtain a more informative fusion image, we further designed a novel fusion strategy based on unity fusion attention, which is composed of a channel attention module and a spatial attention module. Specifically, the proposed fusion approach mainly comprises three key components: feature extraction, feature fusion and image reconstruction. We firstly utilize seven convolutional blocks to extract the image features from source images. Then, the extracted convolutional features are fused by the proposed fusion strategy in the feature fusion layer. Finally, the fused image features are reconstructed by four convolutional blocks. Experimental results demonstrate that the proposed approach for multi-focus image fusion achieves remarkable fusion performance compared to 19 state-of-the-art fusion methods.

Abstract (translated)

URL

https://arxiv.org/abs/2101.04506

PDF

https://arxiv.org/pdf/2101.04506


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot