Paper Reading AI Learner

Learning to Anticipate Egocentric Actions by Imagination

2021-01-13 08:04:10
Yu Wu, Linchao Zhu, Xiaohan Wang, Yi Yang, Fei Wu


tract: Anticipating actions before they are executed is crucial for a wide range of practical applications, including autonomous driving and robotics. In this paper, we study the egocentric action anticipation task, which predicts future action seconds before it is performed for egocentric videos. Previous approaches focus on summarizing the observed content and directly predicting future action based on past observations. We believe it would benefit the action anticipation if we could mine some cues to compensate for the missing information of the unobserved frames. We then propose to decompose the action anticipation into a series of future feature predictions. We imagine how the visual feature changes in the near future and then predicts future action labels based on these imagined representations. Differently, our ImagineRNN is optimized in a contrastive learning way instead of feature regression. We utilize a proxy task to train the ImagineRNN, i.e., selecting the correct future states from distractors. We further improve ImagineRNN by residual anticipation, i.e., changing its target to predicting the feature difference of adjacent frames instead of the frame content. This promotes the network to focus on our target, i.e., the future action, as the difference between adjacent frame features is more important for forecasting the future. Extensive experiments on two large-scale egocentric action datasets validate the effectiveness of our method. Our method significantly outperforms previous methods on both the seen test set and the unseen test set of the EPIC Kitchens Action Anticipation Challenge.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot