Paper Reading AI Learner

End-to-End Speaker Height and age estimation using Attention Mechanism with LSTM-RNN

2021-01-13 13:41:18
Manav Kaushik, Van Tung Pham, Eng Siong Chng

Abstract

tract: Automatic height and age estimation of speakers using acoustic features is widely used for the purpose of human-computer interaction, forensics, etc. In this work, we propose a novel approach of using attention mechanism to build an end-to-end architecture for height and age estimation. The attention mechanism is combined with Long Short-Term Memory(LSTM) encoder which is able to capture long-term dependencies in the input acoustic features. We modify the conventionally used Attention -- which calculates context vectors the sum of attention only across timeframes -- by introducing a modified context vector which takes into account total attention across encoder units as well, giving us a new cross-attention mechanism. Apart from this, we also investigate a multi-task learning approach for jointly estimating speaker height and age. We train and test our model on the TIMIT corpus. Our model outperforms several approaches in the literature. We achieve a root mean square error (RMSE) of 6.92cm and6.34cm for male and female heights respectively and RMSE of 7.85years and 8.75years for male and females ages respectively. By tracking the attention weights allocated to different phones, we find that Vowel phones are most important whistlestop phones are least important for the estimation task.

Abstract (translated)

URL

https://arxiv.org/abs/2101.05056

PDF

https://arxiv.org/pdf/2101.05056


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot