Paper Reading AI Learner

Non-intrusive surrogate modeling for parametrized time-dependent PDEs using convolutional autoencoders

2021-01-14 11:34:58
Stefanos Nikolopoulos, Ioannis Kalogeris, Vissarion Papadopoulos

Abstract

This work presents a non-intrusive surrogate modeling scheme based on machine learning technology for predictive modeling of complex systems, described by parametrized time-dependent PDEs. For these problems, typical finite element approaches involve the spatiotemporal discretization of the PDE and the solution of the corresponding linear system of equations at each time step. Instead, the proposed method utilizes a convolutional autoencoder in conjunction with a feed forward neural network to establish a low-cost and accurate mapping from the problem's parametric space to its solution space. For this purpose, time history response data are collected by solving the high-fidelity model via FEM for a reduced set of parameter values. Then, by applying the convolutional autoencoder to this data set, a low-dimensional representation of the high-dimensional solution matrices is provided by the encoder, while the reconstruction map is obtained by the decoder. Using the latent representation given by the encoder, a feed-forward neural network is efficiently trained to map points from the problem's parametric space to the compressed version of the respective solution matrices. This way, the encoded response of the system at new parameter values is given by the neural network, while the entire response is delivered by the decoder. This approach effectively bypasses the need to serially formulate and solve the system's governing equations at each time increment, thus resulting in a significant cost reduction and rendering the method ideal for problems requiring repeated model evaluations or 'real-time' computations. The elaborated methodology is demonstrated on the stochastic analysis of time-dependent PDEs solved with the Monte Carlo method, however, it can be straightforwardly applied to other similar-type problems, such as sensitivity analysis, design optimization, etc.

Abstract (translated)

URL

https://arxiv.org/abs/2101.05555

PDF

https://arxiv.org/pdf/2101.05555.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot