Paper Reading AI Learner

Spectral Leakage and Rethinking the Kernel Size in CNNs

2021-01-25 14:49:29
Nergis Tomen, Jan van Gemert

Abstract

Convolutional layers in CNNs implement linear filters which decompose the input into different frequency bands. However, most modern architectures neglect standard principles of filter design when optimizing their model choices regarding the size and shape of the convolutional kernel. In this work, we consider the well-known problem of spectral leakage caused by windowing artifacts in filtering operations in the context of CNNs. We show that the small size of CNN kernels make them susceptible to spectral leakage, which may induce performance-degrading artifacts. To address this issue, we propose the use of larger kernel sizes along with the Hamming window function to alleviate leakage in CNN architectures. We demonstrate improved classification accuracy over baselines with conventional $3\times 3$ kernels, on multiple benchmark datasets including Fashion-MNIST, CIFAR-10, CIFAR-100 and ImageNet, via the simple use of a standard window function in convolutional layers. Finally, we show that CNNs employing the Hamming window display increased robustness against certain types of adversarial attacks.

Abstract (translated)

URL

https://arxiv.org/abs/2101.10143

PDF

https://arxiv.org/pdf/2101.10143.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot