Paper Reading AI Learner

Gigapixel Histopathological Image Analysis using Attention-based Neural Networks

2021-01-25 10:18:52
Nadia Brancati, Giuseppe De Pietro, Daniel Riccio, Maria frucci

Abstract

Although CNNs are widely considered as the state-of-the-art models in various applications of image analysis, one of the main challenges still open is the training of a CNN on high resolution images. Different strategies have been proposed involving either a rescaling of the image or an individual processing of parts of the image. Such strategies cannot be applied to images, such as gigapixel histopathological images, for which a high reduction in resolution inherently effects a loss of discriminative information, and in respect of which the analysis of single parts of the image suffers from a lack of global information or implies a high workload in terms of annotating the training images in such a way as to select significant parts. We propose a method for the analysis of gigapixel histopathological images solely by using weak image-level labels. In particular, two analysis tasks are taken into account: a binary classification and a prediction of the tumor proliferation score. Our method is based on a CNN structure consisting of a compressing path and a learning path. In the compressing path, the gigapixel image is packed into a grid-based feature map by using a residual network devoted to the feature extraction of each patch into which the image has been divided. In the learning path, attention modules are applied to the grid-based feature map, taking into account spatial correlations of neighboring patch features to find regions of interest, which are then used for the final whole slide analysis. Our method integrates both global and local information, is flexible with regard to the size of the input images and only requires weak image-level labels. Comparisons with different methods of the state-of-the-art on two well known datasets, Camelyon16 and TUPAC16, have been made to confirm the validity of the proposed model.

Abstract (translated)

URL

https://arxiv.org/abs/2101.09992

PDF

https://arxiv.org/pdf/2101.09992.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot