Paper Reading AI Learner

An Abstraction-based Method to Verify Multi-Agent Deep Reinforcement-Learning Behaviours

2021-02-02 11:12:30
Pierre El Mqirmi, Francesco Belardinelli, Borja G. León

Abstract

Multi-agent reinforcement learning (RL) often struggles to ensure the safe behaviours of the learning agents, and therefore it is generally not adapted to safety-critical applications. To address this issue, we present a methodology that combines formal verification with (deep) RL algorithms to guarantee the satisfaction of formally-specified safety constraints both in training and testing. The approach we propose expresses the constraints to verify in Probabilistic Computation Tree Logic (PCTL) and builds an abstract representation of the system to reduce the complexity of the verification step. This abstract model allows for model checking techniques to identify a set of abstract policies that meet the safety constraints expressed in PCTL. Then, the agents' behaviours are restricted according to these safe abstract policies. We provide formal guarantees that by using this method, the actions of the agents always meet the safety constraints, and provide a procedure to generate an abstract model automatically. We empirically evaluate and show the effectiveness of our method in a multi-agent environment.

Abstract (translated)

URL

https://arxiv.org/abs/2102.01434

PDF

https://arxiv.org/pdf/2102.01434.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot