Paper Reading AI Learner

Addressing Inherent Uncertainty: Risk-Sensitive Behavior Generation for Automated Driving using Distributional Reinforcement Learning

2021-02-05 11:45:12
Julian Bernhard, Stefan Pollok, Alois Knoll

Abstract

For highly automated driving above SAE level~3, behavior generation algorithms must reliably consider the inherent uncertainties of the traffic environment, e.g. arising from the variety of human driving styles. Such uncertainties can generate ambiguous decisions, requiring the algorithm to appropriately balance low-probability hazardous events, e.g. collisions, and high-probability beneficial events, e.g. quickly crossing the intersection. State-of-the-art behavior generation algorithms lack a distributional treatment of decision outcome. This impedes a proper risk evaluation in ambiguous situations, often encouraging either unsafe or conservative behavior. Thus, we propose a two-step approach for risk-sensitive behavior generation combining offline distribution learning with online risk assessment. Specifically, we first learn an optimal policy in an uncertain environment with Deep Distributional Reinforcement Learning. During execution, the optimal risk-sensitive action is selected by applying established risk criteria, such as the Conditional Value at Risk, to the learned state-action return distributions. In intersection crossing scenarios, we evaluate different risk criteria and demonstrate that our approach increases safety, while maintaining an active driving style. Our approach shall encourage further studies about the benefits of risk-sensitive approaches for self-driving vehicles.

Abstract (translated)

URL

https://arxiv.org/abs/2102.03119

PDF

https://arxiv.org/pdf/2102.03119.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot