Paper Reading AI Learner

Counterfactual Contextual Multi-Armed Bandit: a Real-World Application to Diagnose Apple Diseases

2021-02-08 14:11:10
Gabriele Sottocornola, Fabio Stella, Markus Zanker

Abstract

Post-harvest diseases of apple are one of the major issues in the economical sector of apple production, causing severe economical losses to producers. Thus, we developed DSSApple, a picture-based decision support system able to help users in the diagnosis of apple diseases. Specifically, this paper addresses the problem of sequentially optimizing for the best diagnosis, leveraging past interactions with the system and their contextual information (i.e. the evidence provided by the users). The problem of learning an online model while optimizing for its outcome is commonly addressed in the literature through a stochastic active learning paradigm - i.e. Contextual Multi-Armed Bandit (CMAB). This methodology interactively updates the decision model considering the success of each past interaction with respect to the context provided in each round. However, this information is very often partial and inadequate to handle such complex decision making problems. On the other hand, human decisions implicitly include unobserved factors (referred in the literature as unobserved confounders) that significantly contribute to the human's final decision. In this paper, we take advantage of the information embedded in the observed human decisions to marginalize confounding factors and improve the capability of the CMAB model to identify the correct diagnosis. Specifically, we propose a Counterfactual Contextual Multi-Armed Bandit, a model based on the causal concept of counterfactual. The proposed model is validated with offline experiments based on data collected through a large user study on the application. The results prove that our model is able to outperform both traditional CMAB algorithms and observed user decisions, in real-world tasks of predicting the correct apple disease.

Abstract (translated)

URL

https://arxiv.org/abs/2102.04214

PDF

https://arxiv.org/pdf/2102.04214.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot