Paper Reading AI Learner

Transfer Learning Approach for Arabic Offensive Language Detection System -- BERT-Based Model

2021-02-09 04:58:18
Fatemah Husain, Ozlem Uzuner

Abstract

Developing a system to detect online offensive language is very important to the health and the security of online users. Studies have shown that cyberhate, online harassment and other misuses of technology are on the rise, particularly during the global Coronavirus pandemic in 2020. According to the latest report by the Anti-Defamation League (ADL), 35% of online users reported online harassment related to their identity-based characteristics, which is a 3% increase over 2019. Applying advanced techniques from the Natural Language Processing (NLP) field to support the development of an online hate-free community is a critical task for social justice. Transfer learning enhances the performance of the classifier by allowing the transfer of knowledge from one domain or one dataset to others that have not been seen before, thus, supporting the classifier to be more generalizable. In our study, we apply the principles of transfer learning cross multiple Arabic offensive language datasets to compare the effects on system performance. This study aims at investigating the effects of fine-tuning and training Bidirectional Encoder Representations from Transformers (BERT) model on multiple Arabic offensive language datasets individually and testing it using other datasets individually. Our experiment starts with a comparison among multiple BERT models to guide the selection of the main model that is used for our study. The study also investigates the effects of concatenating all datasets to be used for fine-tuning and training BERT model. Our results demonstrate the limited effects of transfer learning on the performance of the classifiers, particularly for highly dialectic comments.

Abstract (translated)

URL

https://arxiv.org/abs/2102.05708

PDF

https://arxiv.org/pdf/2102.05708.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot