Paper Reading AI Learner

On the Equilibrium Elicitation of Markov Games Through Information Design

2021-02-14 13:30:06
Tao Zhang, Quanyan Zhu

Abstract

This work considers a novel information design problem and studies how the craft of payoff-relevant environmental signals solely can influence the behaviors of intelligent agents. The agents' strategic interactions are captured by an incomplete-information Markov game, in which each agent first selects one environmental signal from multiple signal sources as additional payoff-relevant information and then takes an action. There is a rational information designer (designer) who possesses one signal source and aims to control the equilibrium behaviors of the agents by designing the information structure of her signals sent to the agents. An obedient principle is established which states that it is without loss of generality to focus on the direct information design when the information design incentivizes each agent to select the signal sent by the designer, such that the design process avoids the predictions of the agents' strategic selection behaviors. We then introduce the design protocol given a goal of the designer referred to as obedient implementability (OIL) and characterize the OIL in a class of obedient perfect Bayesian Markov Nash equilibria (O-PBME). A new framework for information design is proposed based on an approach of maximizing the optimal slack variables. Finally, we formulate the designer's goal selection problem and characterize it in terms of information design by establishing a relationship between the O-PBME and the Bayesian Markov correlated equilibria, in which we build upon the revelation principle in classic information design in economics. The proposed approach can be applied to elicit desired behaviors of multi-agent systems in competing as well as cooperating settings and be extended to heterogeneous stochastic games in the complete- and the incomplete-information environments.

Abstract (translated)

URL

https://arxiv.org/abs/2102.07152

PDF

https://arxiv.org/pdf/2102.07152.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot