Paper Reading AI Learner

Automatic Face Understanding: Recognizing Families in Photos

2021-01-10 22:37:25
Joseph P Robinson

Abstract

We built the largest database for kinship recognition. The data were labeled using a novel clustering algorithm that used label proposals as side information to guide more accurate clusters. Great savings in time and human input was had. Statistically, FIW shows enormous gains over its predecessors. We have several benchmarks in kinship verification, family classification, tri-subject verification, and large-scale search and retrieval. We also trained CNNs on FIW and deployed the model on the renowned KinWild I and II to gain SOTA. Most recently, we further augmented FIW with MM. Now, video dynamics, audio, and text captions can be used in the decision making of kinship recognition systems. We expect FIW will significantly impact research and reality. Additionally, we tackled the classic problem of facial landmark localization. A majority of these networks have objectives based on L1 or L2 norms, which inherit several disadvantages. The locations of landmarks are determined from generated heatmaps from which predicted landmark locations get penalized without accounting for the spread: a high scatter corresponds to low confidence and vice-versa. To address this, we introduced an objective that penalizes for low confidence. Another issue is a dependency on labeled data, which is expensive to collect and susceptible to error. We addressed both issues by proposing an adversarial training framework that leverages unlabeled data to improve model performance. Our method claims SOTA on renowned benchmarks. Furthermore, our model is robust with a reduced size: 1/8 the number of channels is comparable to SOTA in real-time on a CPU. Finally, we built BFW to serve as a proxy to measure bias across ethnicity and gender subgroups, allowing us to characterize FR performances per subgroup. We show performances are non-optimal when a single threshold is used to determine whether sample pairs are genuine.

Abstract (translated)

URL

https://arxiv.org/abs/2102.08941

PDF

https://arxiv.org/pdf/2102.08941.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot