Paper Reading AI Learner

Deep Miner: A Deep and Multi-branch Network which Mines Rich and Diverse Features for Person Re-identification

2021-02-18 13:30:23
Abdallah Benzine, Mohamed El Amine Seddik, Julien Desmarais

Abstract

Most recent person re-identification approaches are based on the use of deep convolutional neural networks (CNNs). These networks, although effective in multiple tasks such as classification or object detection, tend to focus on the most discriminative part of an object rather than retrieving all its relevant features. This behavior penalizes the performance of a CNN for the re-identification task, since it should identify diverse and fine grained features. It is then essential to make the network learn a wide variety of finer characteristics in order to make the re-identification process of people effective and robust to finer changes. In this article, we introduce Deep Miner, a method that allows CNNs to "mine" richer and more diverse features about people for their re-identification. Deep Miner is specifically composed of three types of branches: a Global branch (G-branch), a Local branch (L-branch) and an Input-Erased branch (IE-branch). G-branch corresponds to the initial backbone which predicts global characteristics, while L-branch retrieves part level resolution features. The IE-branch for its part, receives partially suppressed feature maps as input thereby allowing the network to "mine" new features (those ignored by G-branch) as output. For this special purpose, a dedicated suppression procedure for identifying and removing features within a given CNN is introduced. This suppression procedure has the major benefit of being simple, while it produces a model that significantly outperforms state-of-the-art (SOTA) re-identification methods. Specifically, we conduct experiments on four standard person re-identification benchmarks and witness an absolute performance gain up to 6.5% mAP compared to SOTA.

Abstract (translated)

URL

https://arxiv.org/abs/2102.09321

PDF

https://arxiv.org/pdf/2102.09321.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot