Paper Reading AI Learner

Deep Deformation Detail Synthesis for Thin Shell Models

2021-02-23 08:09:11
Lan Chen, Lin Gao, Jie Yang, Shibiao Xu, Juntao Ye, Xiaopeng Zhang, Yu-Kun Lai

Abstract

In physics-based cloth animation, rich folds and detailed wrinkles are achieved at the cost of expensive computational resources and huge labor tuning. Data-driven techniques make efforts to reduce the computation significantly by a database. One type of methods relies on human poses to synthesize fitted garments which cannot be applied to general cloth. Another type of methods adds details to the coarse meshes without such restrictions. However, existing works usually utilize coordinate-based representations which cannot cope with large-scale deformation, and requires dense vertex correspondences between coarse and fine meshes. Moreover, as such methods only add details, they require coarse meshes to be close to fine meshes, which can be either impossible, or require unrealistic constraints when generating fine meshes. To address these challenges, we develop a temporally and spatially as-consistent-as-possible deformation representation (named TS-ACAP) and a DeformTransformer network to learn the mapping from low-resolution meshes to detailed ones. This TS-ACAP representation is designed to ensure both spatial and temporal consistency for sequential large-scale deformations from cloth animations. With this representation, our DeformTransformer network first utilizes two mesh-based encoders to extract the coarse and fine features, respectively. To transduct the coarse features to the fine ones, we leverage the Transformer network that consists of frame-level attention mechanisms to ensure temporal coherence of the prediction. Experimental results show that our method is able to produce reliable and realistic animations in various datasets at high frame rates: 10 ~ 35 times faster than physics-based simulation, with superior detail synthesis abilities than existing methods.

Abstract (translated)

URL

https://arxiv.org/abs/2102.11541

PDF

https://arxiv.org/pdf/2102.11541.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot