Paper Reading AI Learner

Federated Generalized Face Presentation Attack Detection

2021-04-14 02:44:53
Rui Shao, Pramuditha Perera, Pong C. Yuen, Vishal M. Patel

Abstract

Face presentation attack detection plays a critical role in the modern face recognition pipeline. A face presentation attack detection model with good generalization can be obtained when it is trained with face images from different input distributions and different types of spoof attacks. In reality, training data (both real face images and spoof images) are not directly shared between data owners due to legal and privacy issues. In this paper, with the motivation of circumventing this challenge, we propose a Federated Face Presentation Attack Detection (FedPAD) framework that simultaneously takes advantage of rich fPAD information available at different data owners while preserving data privacy. In the proposed framework, each data center locally trains its own fPAD model. A server learns a global fPAD model by iteratively aggregating model updates from all data centers without accessing private data in each of them. To equip the aggregated fPAD model in the server with better generalization ability to unseen attacks from users, following the basic idea of FedPAD, we further propose a Federated Generalized Face Presentation Attack Detection (FedGPAD) framework. A federated domain disentanglement strategy is introduced in FedGPAD, which treats each data center as one domain and decomposes the fPAD model into domain-invariant and domain-specific parts in each data center. Two parts disentangle the domain-invariant and domain-specific features from images in each local data center, respectively. A server learns a global fPAD model by only aggregating domain-invariant parts of the fPAD models from data centers and thus a more generalized fPAD model can be aggregated in server. We introduce the experimental setting to evaluate the proposed FedPAD and FedGPAD frameworks and carry out extensive experiments to provide various insights about federated learning for fPAD.

Abstract (translated)

URL

https://arxiv.org/abs/2104.06595

PDF

https://arxiv.org/pdf/2104.06595.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot