Paper Reading AI Learner

GRNN: Generative Regression Neural Network -- A Data Leakage Attack for Federated Learning

2021-05-02 18:39:37
Hanchi Ren, Jingjing Deng, Xianghua Xie

Abstract

Data privacy has become an increasingly important issue in machine learning. Many approaches have been developed to tackle this issue, e.g., cryptography (Homomorphic Encryption, Differential Privacy, etc.) and collaborative training (Secure Multi-Party Computation, Distributed Learning and Federated Learning). These techniques have a particular focus on data encryption or secure local computation. They transfer the intermediate information to the third-party to compute the final result. Gradient exchanging is commonly considered to be a secure way of training a robust model collaboratively in deep learning. However, recent researches have demonstrated that sensitive information can be recovered from the shared gradient. Generative Adversarial Networks (GAN), in particular, have shown to be effective in recovering those information. However, GAN based techniques require additional information, such as class labels which are generally unavailable for privacy persevered learning. In this paper, we show that, in Federated Learning (FL) system, image-based privacy data can be easily recovered in full from the shared gradient only via our proposed Generative Regression Neural Network (GRNN). We formulate the attack to be a regression problem and optimise two branches of the generative model by minimising the distance between gradients. We evaluate our method on several image classification tasks. The results illustrate that our proposed GRNN outperforms state-of-the-art methods with better stability, stronger robustness, and higher accuracy. It also has no convergence requirement to the global FL model. Moreover, we demonstrate information leakage using face re-identification. Some defense strategies are also discussed in this work.

Abstract (translated)

URL

https://arxiv.org/abs/2105.00529

PDF

https://arxiv.org/pdf/2105.00529.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot