Paper Reading AI Learner

CUAB: Convolutional Uncertainty Attention Block Enhanced the Chest X-ray Image Analysis

2021-05-05 02:28:04
Chi-Shiang Wang, Fang-Yi Su, Tsung-Lu Michael Lee, Yi-Shan Tsai, Jung-Hsien Chiang

Abstract

In recent years, convolutional neural networks (CNNs) have been successfully implemented to various image recognition applications, such as medical image analysis, object detection, and image segmentation. Many studies and applications have been working on improving the performance of CNN algorithms and models. The strategies that aim to improve the performance of CNNs can be grouped into three major approaches: (1) deeper and wider network architecture, (2) automatic architecture search, and (3) convolutional attention block. Unlike approaches (1) and (2), the convolutional attention block approach is more flexible with lower cost. It enhances the CNN performance by extracting more efficient features. However, the existing attention blocks focus on enhancing the significant features, which lose some potential features in the uncertainty information. Inspired by the test time augmentation and test-time dropout approaches, we developed a novel convolutional uncertainty attention block (CUAB) that can leverage the uncertainty information to improve CNN-based models. The proposed module discovers potential information from the uncertain regions on feature maps in computer vision tasks. It is a flexible functional attention block that can be applied to any position in the convolutional block in CNN models. We evaluated the CUAB with notable backbone models, ResNet and ResNeXt, on a medical image segmentation task. The CUAB achieved a dice score of 73% and 84% in pneumonia and pneumothorax segmentation, respectively, thereby outperforming the original model and other notable attention approaches. The results demonstrated that the CUAB can efficiently utilize the uncertainty information to improve the model performance.

Abstract (translated)

URL

https://arxiv.org/abs/2105.01840

PDF

https://arxiv.org/pdf/2105.01840.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot