Paper Reading AI Learner

Prevent the Language Model from being Overconfident in Neural Machine Translation

2021-05-24 05:34:09
Mengqi Miao, Fandong Meng, Yijin Liu, Xiao-Hua Zhou, Jie Zhou

Abstract

The Neural Machine Translation (NMT) model is essentially a joint language model conditioned on both the source sentence and partial translation. Therefore, the NMT model naturally involves the mechanism of the Language Model (LM) that predicts the next token only based on partial translation. Despite its success, NMT still suffers from the hallucination problem, generating fluent but inadequate translations. The main reason is that NMT pays excessive attention to the partial translation while neglecting the source sentence to some extent, namely overconfidence of the LM. Accordingly, we define the Margin between the NMT and the LM, calculated by subtracting the predicted probability of the LM from that of the NMT model for each token. The Margin is negatively correlated to the overconfidence degree of the LM. Based on the property, we propose a Margin-based Token-level Objective (MTO) and a Margin-based Sentencelevel Objective (MSO) to maximize the Margin for preventing the LM from being overconfident. Experiments on WMT14 English-to-German, WMT19 Chinese-to-English, and WMT14 English-to-French translation tasks demonstrate the effectiveness of our approach, with 1.36, 1.50, and 0.63 BLEU improvements, respectively, compared to the Transformer baseline. The human evaluation further verifies that our approaches improve translation adequacy as well as fluency.

Abstract (translated)

URL

https://arxiv.org/abs/2105.11098

PDF

https://arxiv.org/pdf/2105.11098.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot