Paper Reading AI Learner

Few-Shot Upsampling for Protest Size Detection

2021-05-24 13:27:23
Andrew Halterman, Benjamin J. Radford

Abstract

We propose a new task and dataset for a common problem in social science research: "upsampling" coarse document labels to fine-grained labels or spans. We pose the problem in a question answering format, with the answers providing the fine-grained labels. We provide a benchmark dataset and baselines on a socially impactful task: identifying the exact crowd size at protests and demonstrations in the United States given only order-of-magnitude information about protest attendance, a very small sample of fine-grained examples, and English-language news text. We evaluate several baseline models, including zero-shot results from rule-based and question-answering models, few-shot models fine-tuned on a small set of documents, and weakly supervised models using a larger set of coarsely-labeled documents. We find that our rule-based model initially outperforms a zero-shot pre-trained transformer language model but that further fine-tuning on a very small subset of 25 examples substantially improves out-of-sample performance. We also demonstrate a method for fine-tuning the transformer span on only the coarse labels that performs similarly to our rule-based approach. This work will contribute to social scientists' ability to generate data to understand the causes and successes of collective action.

Abstract (translated)

URL

https://arxiv.org/abs/2105.11260

PDF

https://arxiv.org/pdf/2105.11260.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot