Paper Reading AI Learner

A Framework to Enhance Generalization of Deep Metric Learning methods using General Discriminative Feature Learning and Class Adversarial Neural Networks

2021-06-11 14:24:40
Karrar Al-Kaabi, Reza Monsefi, Davood Zabihzadeh

Abstract

Metric learning algorithms aim to learn a distance function that brings the semantically similar data items together and keeps dissimilar ones at a distance. The traditional Mahalanobis distance learning is equivalent to find a linear projection. In contrast, Deep Metric Learning (DML) methods are proposed that automatically extract features from data and learn a non-linear transformation from input space to a semantically embedding space. Recently, many DML methods are proposed focused to enhance the discrimination power of the learned metric by providing novel sampling strategies or loss functions. This approach is very helpful when both the training and test examples are coming from the same set of categories. However, it is less effective in many applications of DML such as image retrieval and person-reidentification. Here, the DML should learn general semantic concepts from observed classes and employ them to rank or identify objects from unseen categories. Neglecting the generalization ability of the learned representation and just emphasizing to learn a more discriminative embedding on the observed classes may lead to the overfitting problem. To address this limitation, we propose a framework to enhance the generalization power of existing DML methods in a Zero-Shot Learning (ZSL) setting by general yet discriminative representation learning and employing a class adversarial neural network. To learn a more general representation, we propose to employ feature maps of intermediate layers in a deep neural network and enhance their discrimination power through an attention mechanism. Besides, a class adversarial network is utilized to enforce the deep model to seek class invariant features for the DML task. We evaluate our work on widely used machine vision datasets in a ZSL setting.

Abstract (translated)

URL

https://arxiv.org/abs/2106.06420

PDF

https://arxiv.org/pdf/2106.06420.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot