Paper Reading AI Learner

RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

2021-09-11 08:01:14
Shiyu Tang, Ruihao Gong, Yan Wang, Aishan Liu, Jiakai Wang, Xinyun Chen, Fengwei Yu, Xianglong Liu, Dawn Song, Alan Yuille, Philip H.S. Torr, Dacheng Tao

Abstract

Deep neural networks (DNNs) are vulnerable to adversarial noises, which motivates the benchmark of model robustness. Existing benchmarks mainly focus on evaluating the defenses, but there are no comprehensive studies of how architecture design and general training techniques affect robustness. Comprehensively benchmarking their relationships will be highly beneficial for better understanding and developing robust DNNs. Thus, we propose RobustART, the first comprehensive Robustness investigation benchmark on ImageNet (including open-source toolkit, pre-trained model zoo, datasets, and analyses) regarding ARchitecture design (44 human-designed off-the-shelf architectures and 1200+ networks from neural architecture search) and Training techniques (10+ general techniques, e.g., data augmentation) towards diverse noises (adversarial, natural, and system noises). Extensive experiments revealed and substantiated several insights for the first time, for example: (1) adversarial training largely improves the clean accuracy and all types of robustness for Transformers and MLP-Mixers; (2) with comparable sizes, CNNs > Transformers > MLP-Mixers on robustness against natural and system noises; Transformers > MLP-Mixers > CNNs on adversarial robustness; (3) for some light-weight architectures (e.g., EfficientNet, MobileNetV2, and MobileNetV3), increasing model sizes or using extra training data cannot improve robustness. Our benchmark http://robust.art/ : (1) presents an open-source platform for conducting comprehensive evaluation on diverse robustness types; (2) provides a variety of pre-trained models with different training techniques to facilitate robustness evaluation; (3) proposes a new view to better understand the mechanism towards designing robust DNN architectures, backed up by the analysis. We will continuously contribute to building this ecosystem for the community.

Abstract (translated)

URL

https://arxiv.org/abs/2109.05211

PDF

https://arxiv.org/pdf/2109.05211.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot