Paper Reading AI Learner

Reversing Two-Stream Networks with Decoding Discrepancy Penalty for Robust Action Recognition

2018-11-20 16:49:17
Yunbo Wang, Zhiyu Yao, Hongyu Zhu, Mingsheng Long, Jianmin Wang, Philip S Yu

Abstract

We discuss the robustness and generalization ability in the realm of action recognition, showing that the mainstream neural networks are not robust to disordered frames and diverse video environments. There are two possible reasons: First, existing models lack an appropriate method to overcome the inevitable decision discrepancy between multiple streams with different input modalities. Second, by doing cross-dataset experiments, we find that the optical flow features are hard to be transferred, which affects the generalization ability of the two-stream neural networks. For robust action recognition, we present the Reversed Two-Stream Networks (Rev2Net) which has three properties: (1) It could learn more transferable, robust video features by reversing the multi-modality inputs as training supervisions. It outperforms all other compared models in challenging frames shuffle experiments and cross-dataset experiments. (2) It is highlighted by an adaptive, collaborative multi-task learning approach that is applied between decoders to penalize their disagreement in the deep feature space. We name it the decoding discrepancy penalty (DDP). (3) As the decoder streams will be removed at test time, Rev2Net makes recognition decisions purely based on raw video frames. Rev2Net achieves the best results in the cross-dataset settings and competitive results on classic action recognition tasks: 94.6% for UCF-101, 71.1% for HMDB-51 and 73.3% for Kinetics. It performs even better than most methods who take extra inputs beyond raw RGB frames.

Abstract (translated)

URL

https://arxiv.org/abs/1811.08362

PDF

https://arxiv.org/pdf/1811.08362.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot