Paper Reading AI Learner

HMAFlow: Learning More Accurate Optical Flow via Hierarchical Motion Field Alignment

2024-09-09 11:43:35
Dianbo Ma, Kousuke Imamura, Ziyan Gao, Xiangjie Wang, Satoshi Yamane

Abstract

Optical flow estimation is a fundamental and long-standing visual task. In this work, we present a novel method, dubbed HMAFlow, to improve optical flow estimation in these tough scenes, especially with small objects. The proposed model mainly consists of two core components: a Hierarchical Motion Field Alignment (HMA) module and a Correlation Self-Attention (CSA) module. In addition, we rebuild 4D cost volumes by employing a Multi-Scale Correlation Search (MCS) layer and replacing average pooling in common cost volumes with an search strategy using multiple search ranges. Experimental results demonstrate that our model achieves the best generalization performance in comparison to other state-of-the-art methods. Specifically, compared with RAFT, our method achieves relative error reductions of 14.2% and 3.4% on the clean pass and final pass of the Sintel online benchmark, respectively. On the KITTI test benchmark, HMAFlow surpasses RAFT and GMA in the Fl-all metric by a relative margin of 6.8% and 7.7%, respectively. To facilitate future research, our code will be made available at this https URL.

Abstract (translated)

光束追踪估计是一个基本且长期的光学任务。在这项工作中,我们提出了一种名为HMAFlow的新方法,以提高在复杂场景中光学流估计的性能,特别是对于小物体。所提出的模型主要由两个核心组件组成:分层运动场对齐(HMA)模块和关联自注意(CSA)模块。此外,我们通过采用多尺度相关搜索(MCS)层并使用多个搜索范围来替换常见成本卷中的平均池化,从而重构了4D成本体积。实验结果表明,与最先进的其他方法相比,我们的模型具有最佳的一般化性能。具体来说,与RAFT相比,我们的方法在Sintel在线基准的干净通过和最终通过分别实现了14.2%和3.4%的相对误差减少。在KITTI测试基准上,HMAFlow在Fl-all指标上超过了RAFT和GMA,相对优势分别为6.8%和7.7%。为了促进未来的研究,我们的代码将在此处链接的URL上公开。

URL

https://arxiv.org/abs/2409.05531

PDF

https://arxiv.org/pdf/2409.05531.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot