Paper Reading AI Learner

LLMs4OL 2024 Overview: The 1st Large Language Models for Ontology Learning Challenge

2024-09-16 10:15:30
Hamed Babaei Giglou, Jennifer D'Souza, S\"oren Auer

Abstract

This paper outlines the LLMs4OL 2024, the first edition of the Large Language Models for Ontology Learning Challenge. LLMs4OL is a community development initiative collocated with the 23rd International Semantic Web Conference (ISWC) to explore the potential of Large Language Models (LLMs) in Ontology Learning (OL), a vital process for enhancing the web with structured knowledge to improve interoperability. By leveraging LLMs, the challenge aims to advance understanding and innovation in OL, aligning with the goals of the Semantic Web to create a more intelligent and user-friendly web. In this paper, we give an overview of the 2024 edition of the LLMs4OL challenge and summarize the contributions.

Abstract (translated)

本文概述了 LLMs4OL 2024,第一届全国大型语言模型学习面向本体学习挑战赛。LLMs4OL 是一个与第 23 届国际语义网会议(ISWC)合作发展的社区倡议,旨在探索大型语言模型(LLMs)在面向本体学习的潜力,这是一种提高网络互操作性至关重要的过程。通过利用 LLMs,挑战旨在推动在面向本体学习(OL)方面的理解和创新,与语义网的目标相一致,创建一个更加智能和用户友好的网络。在本文中,我们概述了 2024 年 LLMs4OL 挑战赛的基本情况,并总结了其贡献。

URL

https://arxiv.org/abs/2409.10146

PDF

https://arxiv.org/pdf/2409.10146.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot