Paper Reading AI Learner

A Comprehensive Framework for Semantic Similarity Detection Using Transformer Architectures and Enhanced Ensemble Techniques

2025-01-24 07:07:37
Lifu Gao, Qi Zhang, Ziwei Liu

Abstract

Detecting AI-generated text, especially in short-context documents, is difficult because there is not enough context for accurate classification. This paper presents a new teacher-student model that uses domain adaptation and data augmentation to solve these problems. The teacher model, which combines DeBERTa-v3-large and Mamba-790m, learns semantic knowledge through domain-specific fine-tuning. The student model handles short-context text more efficiently. The system uses a Mean Squared Error (MSE) loss function to guide the student's learning, improving both accuracy and efficiency. Also, data augmentation methods like spelling correction and error injection make the model more robust. Experimental results show that this approach works better than baseline methods, proving its usefulness for real-time AI-generated text detection and other text classification tasks.

Abstract (translated)

检测AI生成文本,尤其是在短文档中,由于缺乏足够的上下文信息来进行准确分类而变得困难。本文介绍了一种新的师生模型,该模型结合领域适应和数据增强技术来解决这些问题。教师模型融合了DeBERTa-v3-large和Mamba-790m,并通过特定领域的微调学习语义知识。学生模型则更高效地处理短文本上下文的检测任务。系统采用均方误差(Mean Squared Error,MSE)损失函数引导学生的训练过程,从而提高准确性和效率。此外,数据增强方法如拼写纠错和错误注入使模型更加健壮。实验结果表明,该方法比基线方法表现更好,证明了其在实时AI生成文本检测及其他文本分类任务中的实用性。

URL

https://arxiv.org/abs/2501.14288

PDF

https://arxiv.org/pdf/2501.14288.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot