Paper Reading AI Learner

DEUCE: Dual-diversity Enhancement and Uncertainty-awareness for Cold-start Active Learning

2025-02-01 04:00:03
Jiaxin Guo, C. L. Philip Chen, Shuzhen Li, Tong Zhang

Abstract

Cold-start active learning (CSAL) selects valuable instances from an unlabeled dataset for manual annotation. It provides high-quality data at a low annotation cost for label-scarce text classification. However, existing CSAL methods overlook weak classes and hard representative examples, resulting in biased learning. To address these issues, this paper proposes a novel dual-diversity enhancing and uncertainty-aware (DEUCE) framework for CSAL. Specifically, DEUCE leverages a pretrained language model (PLM) to efficiently extract textual representations, class predictions, and predictive uncertainty. Then, it constructs a Dual-Neighbor Graph (DNG) to combine information on both textual diversity and class diversity, ensuring a balanced data distribution. It further propagates uncertainty information via density-based clustering to select hard representative instances. DEUCE performs well in selecting class-balanced and hard representative data by dual-diversity and informativeness. Experiments on six NLP datasets demonstrate the superiority and efficiency of DEUCE.

Abstract (translated)

冷启动主动学习(CSAL)从未标记的数据集中选择有价值的实例进行人工标注,为标签稀少的文本分类提供了高质量且成本低的数据。然而,现有的CSAL方法忽视了弱类别和难以代表的例子,导致了偏向性的学习问题。为了应对这些问题,本文提出了一种新颖的双多样性增强与不确定性感知(DEUCE)框架用于CSAL。具体来说,DEUCE利用预训练的语言模型(PLM)高效地提取文本表示、类别预测以及预测不确定性。接着,它构建了一个双邻域图(DNG),结合了文本多样性和类别多样性的信息,确保数据分布的均衡性。此外,通过基于密度的聚类传播不确定性信息,DEUCE选择出具有代表性的困难实例。 通过利用双重多样性与信息量,DEUCE在选择平衡且有代表性的样本方面表现出色。实验结果表明,在六个NLP数据集上,DEUCE展示了其优越性和效率。

URL

https://arxiv.org/abs/2502.00305

PDF

https://arxiv.org/pdf/2502.00305.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot