Paper Reading AI Learner

An evaluation of DeepSeek Models in Biomedical Natural Language Processing

2025-03-01 21:26:29
Zaifu Zhan, Shuang Zhou, Huixue Zhou, Jiawen Deng, Yu Hou, Jeremy Yeung, Rui Zhang

Abstract

The advancement of Large Language Models (LLMs) has significantly impacted biomedical Natural Language Processing (NLP), enhancing tasks such as named entity recognition, relation extraction, event extraction, and text classification. In this context, the DeepSeek series of models have shown promising potential in general NLP tasks, yet their capabilities in the biomedical domain remain underexplored. This study evaluates multiple DeepSeek models (Distilled-DeepSeek-R1 series and Deepseek-LLMs) across four key biomedical NLP tasks using 12 datasets, benchmarking them against state-of-the-art alternatives (Llama3-8B, Qwen2.5-7B, Mistral-7B, Phi-4-14B, Gemma-2-9B). Our results reveal that while DeepSeek models perform competitively in named entity recognition and text classification, challenges persist in event and relation extraction due to precision-recall trade-offs. We provide task-specific model recommendations and highlight future research directions. This evaluation underscores the strengths and limitations of DeepSeek models in biomedical NLP, guiding their future deployment and optimization.

Abstract (translated)

大型语言模型(LLMs)的发展在生物医学自然语言处理(NLP)领域产生了显著影响,提升了诸如命名实体识别、关系抽取、事件抽取和文本分类等任务的效果。在此背景下,DeepSeek系列模型在通用NLP任务中展示了巨大的潜力,但在生物医学领域的应用能力仍有待探索。本研究评估了多个DeepSeek模型(Distilled-DeepSeek-R1系列和Deepseek-LLMs)在四个关键的生物医学NLP任务中的表现,并使用12个数据集将它们与最先进的替代模型(如Llama3-8B、Qwen2.5-7B、Mistral-7B、Phi-4-14B、Gemma-2-9B)进行基准测试。我们的研究结果表明,尽管DeepSeek模型在命名实体识别和文本分类任务上表现出色,但在事件抽取和关系提取方面仍面临精度与召回率之间的权衡问题。我们提供了针对特定任务的模型推荐,并指出了未来的研究方向。这一评估强调了DeepSeek模型在生物医学NLP领域的优势和局限性,为它们未来的部署和优化提供指导。

URL

https://arxiv.org/abs/2503.00624

PDF

https://arxiv.org/pdf/2503.00624.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot